"Just-for-Peak" Buffer Inventory For Peak Electricity Demand Reduction of Manufacturing Systems

Lin Li

Assistant Professor

University of Illinois at Chicago

Manufacturing Paradigms

Example of Potential Benefits by Sustainability: Electricity

• Summer Peak Demand Reduction

Potential for U.S. Summer Peak Demand Savings (GW)

Realistic Achievable Potential	2010	2020	2030
Energy Efficiency	1.6	34.8	78.5
Demand Response	16.6	44.4	78.4
Total	18.2	79.2	156.9
Maximum Achievable Potential	2010	2020	2030
Energy Efficiency	10.8	81.7	117.0
Demand Response	29.8	65.9	101.1
Total	40.6	147.6	218.1

Potential for Summer Peak Demand Savings from Energy Efficiency and Demand Response

Summer Peak Demand Savings	2010 (%)	2020 (%)	2030 (%)
Realistic Achievable Potential (RAP)	2.2	8.2	14.0
Maximum Achievable Potential (MAP)	4.9	15.3	19.5

Source: Assessment of Achievable Potential from Energy Efficiency and

Demand Response Programs in the U.S. (2010-2030)

by Electric Power Research Institute

State-of-Art and Research Objectives

• State-of-Art

 Most existing literature focuses on power supply side management, e.g., policy & strategy (Vassileva et al., 2012; Greening, 2010), wholesale pricing (Faria et al., 2011; Doostizadeh and Ghasem, 2012; Faria and Vale, 2011; Yousefi et al., 2011), hardware infrastructure (Kiliccote et al., 2009; Piette et al., 2007; Koch and Piette, 2007), etc., and demand (customer) side applications of commercial & residential building sector (Corno and Razzak, 2012; Wang et al., 2012; Motegi et al., 2007)

Research Objectives

 To establish a systems view for customer-side electricity demand response and to develop cost-effective strategies of electricity demand response for environment-friendly sustainable manufacturing systems.

Sample of Electricity Bill

- Electricity Consumption Charge (\$/kWh)
- Demand Charge (\$/kW)
 - Based on the highest average power of any 15-minute periods throughout the whole billing cycle

Season	Туре	Time of Day	Consumption Rate (\$/kWh)	Demand Rate (\$/kW)
Summer	Off-Peak	7pm–1pm	0.08274	0
(Jun-Sep)	On-Peak	1pm–7pm	0.16790	18.80
Winter	Off-Peak	9pm–10am	0.08274	0
(Oct-May)	On-Peak	10am–9pm	0.11224	8.12

Source: https://www.oru.com/documents/tariffsandregulatorydocuments/ny/electrictariff/el ectricsc20.pdf Peak Demand Reduction through "Just-for-Peak" Buffer Inventory Management

• To reduce electricity demand without compromising system throughput during peak periods by buffer inventory management.

 J_i^T : the target unit of "Just-for-Peak" inventory accumulated in J_i that can ensure the production of the corresponding downstream machine not to be influenced when the upstream machine is turned off for peak demand reduction a_i : the assumed linear accumulation rate for "Just-for-Peak" inventory built up in J_i during the off-peak period c_i : the consumption rate of "Just-for-Peak" inventory in J_i during the peak period when demand reduction is implemented T: the scheduled off-peak period

 t_p : the follow-up scheduled peak period

6

Objective Function: to identify the optimal energy control actions by minimizing the holding cost of the buffer inventory and the electricity bill cost.

 h_i : holding cost per unit held per unit time for the "Just-for-Peak" buffer inventory stored in J_i

 k_i : it takes 1 if the machine *i* is not turned off during peak period, and zero otherwise

 φ_i the rated power of machine i

 C_P : on-peak energy consumption charge rate (\$/kWh)

 C_R : off-peak energy consumption charge rate (\$/kWh)

 C_D : on-peak demand charge rate (\$/kW);

 r_i : the availability of machine i

Case Study

Machine	Cycle Time (min)	MTBF (min)	MTTR (min)	Power (kW)
1	0.455	100.0	4.95	14
2	0.492	45.6	11.7	24
3	0.473	98.8	16.0	14
4	0.489	217.5	27.3	15
5	0.483	109.4	18.4	25
6	0.469	107.7	15.6	25
7	0.482	127.5	19.98	13

Duration of off-peak period T (hour)	Duration of peak period t_p (hour)	Demand reduction requirement <i>P</i> _{saving} (kW)
7.5	0.5	16

On peak demand	On peak electricity	Off peak electricity
charge rate	consumption charge rate consumption charge	
C _D (\$/kW)	C _P (\$/kWh)	C _R (\$/kWh)
9.58	0.029	0.016

Buffer	Buffer Capacity B _i (unit)	Initial contents of ^B i (unit)	Buffer Capacity J _i (unit)	Accumulation rate a _i (unit/hour)	Consumption rate c _i (unit/hour)	Holding cost <i>H</i> _i (\$/unit /hour)
1	70	32	70	34.3	122	0.05
2	80	30	80	12.1	127	0.05
3	50	40	50	5.9	123	0.05
4	42	30	42	0.2	125	0.05
5	45	42	45	0.1	128	0.05
6	90	30	90	0.1	125	0.05

Results Analysis

at ILLINOIS INSTITUTE OF TECHNOLOGY

Thank you very much!

Comments and questions?

